电解水制氢研究取得新突破
2018年12月,国家发展 & Reform Commission and the National 能源 Administration jointly issued the “Clean 能源 Consumption Action Plan (2018-2020)” (hereinafter referred to as the “Plan”). 《澳门赌博平台》指出,探索将剩余可再生能源转化为电热能, 冷能量, 氢能源, 以多种方式实现可再生能源的高效利用.
电解水制氢是一种将富余电能转化为氢能的好方法. 最近, 陈亮团队, 他是新能源研究所的研究员, 宁波材料技术与工程学院, 中国科学院, provided a highly efficient acidic oxygen evolution electrocatalyst 并提出了相应的机理解释, 这在一定程度上促进了酸性电解水中氢气的生成. 相关研究发表在《澳门赌博平台》杂志上。.
水电解制氢,实现余电转换
Both 氢能源 and electric energy are important secondary energy sources and are also the main green and clean energy sources in the future. 氢没有污染,零排放, 并将在未来的人类生活和生产中发挥极其重要的作用.
氢能具有远距离运输的特点, 大规模存储和氢-电交换. 目前主要的发电方法包括化石燃料制氢, 电解水制氢, 以及工业副产品氢.
陈梁, a researcher at the 宁波材料技术与工程学院 of the 中国科学院 and the corresponding author of the paper, 在接受《澳门皇冠线上》采访时,他解释道:“目前, 该行业主要使用化石燃料重整生产氢气. 化石燃料可以是天然气、石油和煤. The energy contained in hydrogen produced by this method is lower than the energy contained in the original fossil fuel because of the heat loss. 除了, 这种方法产生的氢气不能减少二氧化碳的排放, because the carbon dioxide emitted by the process of reforming hydrogen is the same as the carbon dioxide emitted by direct burning of fossil fuels.”
目前, the methods for hydrogen generation by reforming alternative fossil fuels under research in the laboratory stage include biological hydrogen generation, 电解水制氢, 光电化学制氢和光电催化制氢. 在他们中间, the technology of hydrogen generation by electrolysis has already reached a certain scale application in industry.
The main purpose of 电解水制氢 is to convert surplus electricity into 氢能源. 中国拥有世界上最大的风能和太阳能发电量, 但是太阳能和风能有间歇性的问题, 受昼夜变化和气候因素的限制.
“电力的储存一直是个问题. 未用完的电力必须输入国家电网或转化为能源, 否则只能是浪费. Because the electricity generated by solar and wind energy is unstable and if directly input into the grid it will cause a series of problems. 因此,我们需要大力发展剩余电力转换技术.陈亮解释道.
新型高效酸性析氧电催化剂.
根据电解质的不同, 电解水制氢 can be divided into alkaline electrocatalytic hydrogen generation and acidic electrocatalytic hydrogen generation. 陈梁 explained that the electrolysis of water involves two half reactions-the hydrogen evolution reaction on the cathode and the oxygen evolution reaction on the anode. 根据电解质的不同, 分为碱性电解水和酸性电解水. 用于碱性电解水, the difficulty is hydrogen evolution on the cathode; for acidic electrolyzed water, 难点在于阳极上的析氧.
据报道, 业界对碱性电解水的研究已经比较深入, 它在工业上也有一定的应用. 然而,与碱性电解水相比,酸性电解水更受欢迎. 原因是酸性电解水的反应速度要快2 ~ 3个数量级, 产生更少的副产品, 和质子交换膜(PEM), 这反过来又使堆栈非常便携.”
The bottleneck restricting the development of acidic electrolyzed water is the oxygen evolution reaction on the anode, 目前还缺乏高效的酸性析氧电催化剂. 这一次, 陈亮团队 provided a highly efficient new type of acidic oxygen evolution electrocatalyst—CrO2-RuO2 solid solution material, 并提出了相应的机理解释.
Dr. Lin Yichao in the team successfully prepared a new type of CrO2-RuO2 solid solution material based on Cr-based metal-organic framework materials by adsorption of RuCl3 precursors and annealing. The structure of the CrO2-RuO2 solid solution was determined by PXRD crystal repair and Vegard’s law verification, and the Cr and Ru atoms were uniformly distributed in the same nano-single crystal through atomic-resolving spherical aberration electron microscope.
陈亮指出,制备过程非常简单, and the most important thing is to choose a suitable Cr-based metal organic framework material that can adsorb a large amount of RuCl3. “到目前为止,已经报道了数以万计的金属有机框架材料, 还有成千上万的铬基材料. 如果盲目筛选,工作量非常大. 得益于近十年来对金属有机框架材料研究的积累, 快速进入已经实现.
The results show that the CrO2-RuO2 solid solution material is used as the oxygen evolution electrocatalyst on the acidic electrocatalytic hydrogen generation anode, 降低反应的过电位, 这是, 降低了反应的能耗. 该材料在电流密度为10mA·cm-2时的过电位仅为178mV, 10点之后,000个周期, 过电位只增加了11mV, 这比商业RuO2好得多. 通过同步辐射近侧吸收试验, it is found that the valence state of Ru atoms in the crystal structure is slightly higher than +4 due to the strong electron withdrawing effect of 4-valent Cr, Ru-O的键长变短.
通过密度泛函模拟计算. Ziqi Tian of this team found that it is precisely the electron withdrawing effect of +4-valent Cr in the crystal lattice that the catalytic activity of Ru becomes higher and the reaction energy barrier is lowered. 除了, 值得注意的是,固溶体材料中贵金属Ru的含量仅为40%, 哪一种可以显著降低催化剂的成本.
据报道, RuO2 and IrO2 and their derivatives are currently recognized catalysts with acidic oxygen evolution electrocatalytic activity. iro2基材料的酸性析氧活性非常稳定, 但是它的价格很贵. 目前Ir金属的市场价格约为390元/克. 相比之下,汝金属是铂族元素中最便宜的,价格在60元/克左右. 虽然基于ruo2的材料对酸性氧的析出具有很高的电催化活性, 它们非常不稳定. The new CrO2-RuO2 solid solution material reported this time has the highest acidic oxygen evolution electrocatalytic activity, 在10mA·cm-2的电流密度下可稳定工作10小时, 远优于商用RuO2.
陈亮给出了如下图表:“新材料的分子式是Cr0.6Ru0.4O2, Cr的价格是0.4元/克,与Ru的价格相比几乎可以忽略不计. 因此,简单地从元素组成来估算成本,可以降低60%左右. 当然, 前提是还必须开发新材料的大规模制备方法.”
氢能是最有前途的二次能源
全球氢能产业发展迅速,市场规模从187美元增长.从2011年的0.82亿美元降至251亿美元.2017年为4930亿美元,增长率为34%.4%. 在他们中间, 美国是最大的工业氢进口国, 而荷兰是最大的工业氢出口国.
根据数据, in 2017, more than 96% of the world’s main artificial hydrogen generation raw materials were derived from the thermochemical reforming of traditional fossil resources, 只有4%来自于电解水. 煤和天然气也是我国人工制氢的主要原料, 分别占62%和19%. 根据《澳门皇冠线上》, 2016年,中国的氢气产量约为2100万吨, 其中,煤产氢占62%, which was the main source of hydrogen; natural gas produced hydrogen followed by 19 %.
邹Caineng, academician of the 中国科学院 and vice president of the China Petroleum Exploration and Development Research Institute, 分析认为,虽然煤气化氢气会产生大量的二氧化碳, 它仍然是一个大规模的, 低成本和最佳的人工制氢方式由于其丰富的原料和低廉的价格.
高炉烟气、化工废气等. 能否通过变压吸附(PSA)技术实现低成本的氢气回收. 太阳能制氢技术(光催化), 光解是未来理想的制氢技术, but it is subject to problems such as conversion efficiency and cost are expected to be difficult to achieve large-scale before 2030.
在所有的人工制氢方法中, 电解水制氢 will run through the entire process of 氢能源 development, and it is one of the main sources of industrial hydrogen for the construction of a future “氢能源 society”. With the continuous development of water electrolysis hydrogen generation technology and the gradual reduction of costs, electrolysis water hydrogen generation will gradually meet the requirements of commercialization and realize distributed hydrogen generation.
陈梁 said that their team will continue to optimize the preparation method of CrO2-RuO2 solid solution materials in the future. 目前, 金属有机骨架材料尚处于实验室阶段,尚未实现商业化. 该团队将尝试使用其他商业上可获得的廉价铬基原材料. 除了, 他们还将尝试使用相同的策略来制备其他金红石固溶体材料, 如MnO2-RuO2固溶体, 为了获得性能更高的酸性析氧电催化剂.